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a b s t r a c t

Mobile applications require dynamic reconfiguration services (DRS) to self-adapt their behavior to the context

changes (e.g., scarcity of resources). Dynamic Software Product Lines (DSPL) are a well-accepted approach

to manage runtime variability, by means of late binding the variation points at runtime. During the sys-

tem’s execution, the DRS deploys different configurations to satisfy the changing requirements according to

a multiobjective criterion (e.g., insufficient battery level, requested quality of service). Search-based software

engineering and, in particular, multiobjective evolutionary algorithms (MOEAs), can generate valid configura-

tions of a DSPL at runtime. Several approaches use MOEAs to generate optimum configurations of a Software

Product Line, but none of them consider DSPLs for mobile devices. In this paper, we explore the use of MOEAs

to generate at runtime optimum configurations of the DSPL according to different criteria. The optimization

problem is formalized in terms of a Feature Model (FM), a variability model. We evaluate six existing MOEAs

by applying them to 12 different FMs, optimizing three different objectives (usability, battery consumption

and memory footprint). The results are discussed according to the particular requirements of a DRS for mobile

applications, showing that PAES and NSGA-II are the most suitable algorithms for mobile environments.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Mobile applications demand runtime reconfiguration services that

make it possible for them to self-adapt their behavior to the continual

contextual changes that occur in their environment (e.g., scarcity of

available resources) (Brataas et al., 2011; Capilla et al., 2014; Floch

et al., 2013; Mizouni et al., 2014). In some applications, the recon-

figuration can be made to maintain a certain quality of service (QoS)

the user requires, in others the reconfiguration can be made to offer

a personalized service to the user such as location-based services,

and even to provide the user’s personal suggestions based on the rec-

ognized activity and context (Mizouni et al., 2014). For instance, the

battery level of the mobile device may be a critical decision parameter

in changing the behavior of an application if the goal of this reconfig-

uration is to extend the lifespan of the battery and hence the device

connectivity (Mizouni et al., 2014).

One accepted approach to manage the runtime variability of appli-

cations is the Dynamic Software Product Line (DSPL) approach. DSPLs
∗ Corresponding author. Tel.: +34665372568.
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roduce software capable of adapting to changes, by means of bind-

ng the variation points at runtime (Hallsteinsen et al., 2008). This

equires to model the elements that could be adapted dynamically as

ynamic variation points and to generate, at runtime, the different

ariants of the DSPL.

A runtime configuration is the set of values assigned to the dynamic

ariation points, defining a member of the dynamic SPL. If a change

n the execution context is detected, then a reconfiguration service

hould generate a new runtime configuration adapted to the new con-

ext. Therefore, the reconfiguration service should be continuously

enerating optimum runtime configurations adapted to the changing

ontext. But, which and how many objectives should be considered in

he generation of optimum configurations? In the case of mobile ap-

lications, multiple objectives should be taken into account like, loss

f network connectivity, drastic increase or reduction of the available

esources (e.g., battery, memory, CPU) or the user preferences about

uality of service (QoS). For instance, if a user wants to save battery

ife in a mobile phone application, the reconfiguration service should

enerate a configuration with a low battery consumption while trying

o keep the quality of service as high as possible.

Harman et al. (2014) show how Search-Based Software Engineer-

ng (SBSE) has been successfully applied by different approaches

o SPLs. In this paper, we demonstrate that SBSE, and in particular

http://dx.doi.org/10.1016/j.jss.2014.12.041
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1 http://www.sei.cmu.edu/productlines/
ultiobjective evolutionary algorithms (MOEAs), can be used to solve

he problem of generating a valid configuration of a DSPL at run-

ime. Runtime configurations of a DSPL are generated from a vari-

bility model, which specifies the common and the variable elements

f the dynamic product line. Most of DSPL approaches use Feature

odels (FMs) as the de facto standard to specify the commonalities

nd variabilities of the product line in terms of features and con-

traints between them (Cetina et al., 2008; Dinkelaker et al., 2010;

osenmüller et al., 2011; Trinidad et al., 2007; White et al., 2007). In

his case, runtime configurations are defined in terms of features, and

re known as dynamic feature model configurations. This means that

he set of valid configurations that can be deployed during the execu-

ion of the application is then determined by the FM. Therefore, the

OEA needs the FM that models the dynamic variation points. With

n FM available at runtime, an MOEA can generate valid variants of

he application adapted to the context changes.

In this paper, we explore the use of MOEAs to generate at runtime

he variants of the DSPL that fit the current execution context with

egard to several optimization criteria such as battery consumption

r usability. However, in order to be suitable for our reconfiguration

ervice, the employed algorithms should satisfy several requirements

uch as:

1. Fast enough execution time. Reconfiguring the application should

not harm excessively the user experience. Furthermore, since we

are focusing on mobile devices, the response time of the optimiza-

tion algorithm should be of few seconds.

2. Generate only valid configurations. While in different kinds of ap-

proaches (Sayyad et al., 2013) configurations which do not satisfy

all the constraints can be useful, it is not appropriate for a recon-

figuration service to deploy invalid configurations of the appli-

cation. Therefore, the optimization algorithm should only return

valid configurations (i.e., configurations which satisfy all the con-

straints).

3. Multiobjective optimization. Generally, it is necessary to generate

configurations which are optimal regarding several criteria (e.g.,

battery consumption, usability).

4. Support for DSPLs in mobile applications. In DSPLs the number of

variation points that need to be managed is usually much lower

than in SPLs at design time. The reason is that in DSPLs only the

variations points that can change at runtime need to be considered.

Therefore, unlike design time SPLs, in DSPLs only a subset of the

FM variation points are considered; the rest of them are fixed

at design time. For instance, the variability model of the Linux

kernel (Lotufo et al., 2010) contains more than 6000 features, but

although some of these variation points can be decided at runtime

(e.g., I/O scheduler, CPU frequency governor), many points are

decided at design time because they depend on the hardware of

the target device (e.g., CPU architecture, CPU model, virtualization

support, cryptography hardware). Moreover, since our approach

focuses on the development of mobile applications, the DSPLs

managed in our approach would generally be even smaller than

DSPLs for desktop applications.

In this sense, several algorithms have been defined which are able

o obtain an optimal configuration of an FM according to a given op-

imization criteria (Benavides et al., 2010; Guo et al., 2011; Li et al.,

012; Sayyad et al., 2013; Soltani et al., 2012; White et al., 2009a,

009b). However, none of them are suitable for reconfiguration in

obile devices mainly because they were proposed to optimize the

onfiguration of Software Product Lines (SPLs), being designed to be

sed only at design time. Furthermore, only Sayyad et al. (2013) sup-

ort multiobjective optimization (i.e., generating configuration which

re optimal regarding different criteria simultaneously), but not for

SPLs.

Our experiments have been performed using six existing MOEAs

lgorithms, which have been applied to 12 FMs in order to optimize
hree objectives (usability, battery and memory). We have evaluated

hese algorithms according to the requirements imposed by a recon-

guration service for mobile applications and the results show that

AES and NSGA-II are the most suitable MOEAs to be used in mobile

nvironments. They have the lowest execution time and, at the same

ime, they satisfy the rest of requirements.

Following the Introduction, the rest of the paper is organized as

ollows. The backgrounds to DSPLs and FMs are presented in Section 2.

fter this, the related work is discussed in Section 3 and the realization

f our reconfiguration mechanism is described in Section 4. Then,

he experimental setup and the evaluations results are presented in

ections 5 and 6 respectively. Finally, in Section 7 the evaluation

esults and threats to validity are discussed, while our conclusions

nd future work are described in Section 8.

. Background

In this section we show the basics of DSPLs and FMs, which are

sed in our approach to reconfigure mobile applications at runtime.

.1. Dynamic software product lines

An SPL is “a set of software-intensive systems that share a com-

on, managed set of features satisfying the specific needs of a par-

icular market segment or mission and that are developed from a

ommon set of core assets in a prescribed way.”1 DSPLs redefine ex-

sting SPL engineering processes by moving them to runtime, with

he goal of ensuring that system adaptations lead the system to a

alid state. So, in SPLs the engineering processes are able to gener-

te several systems of the same family at design time, but a DSPL is

onsidered a single system able to adapt its behavior at runtime.

The variability model is the central artifact for both SPLs and

SPLs for formally specifying their commonalities and variabilities.

he engineering processes of SPLs generate products by selecting con-

rete values for the variable characteristics specified in the variability

odel. This means that the SPL engineer binds the variation points at

esign time considering the requirements of the intended product. In

ontrast, in DSPLs the variability model describes the potential range

f variations that can be produced at runtime for a single product,

.e., the dynamic variation points already defined in the introduction.

hen, as the set of dynamic variation points drive system adaptation,

hey must be available to be consulted at runtime by a reconfigura-

ion service. But these dynamic variation points must make reference

o the system architectural components. So, in DSPLs the system ar-

hitecture supports all the possible adaptations defined by the set of

ynamic variation points (Hallsteinsen et al., 2008).

So, as part of a DSPL definition the engineer must identify: (i) the

ange of potential adaptations supported by the system in terms of

rchitectural components; (ii) define an explicit representation of the

alid configuration space of the system; (iii) the context changes that

ay trigger an adaptation, i.e., the criteria (which can have several

bjectives) to initiate a reconfiguration or Decision Making Process

DMP); and (iv) the set of possible reactions to context changes that

hould be supported by the system. However, the way these issues

re implemented may differ greatly, as will be shown in Section 3.1.

Since for the majority of DSPLs the decision to initiate a recon-

guration is made autonomously by the system (not by a human),

hey are considered a good technology for developing self-adapting

ystems such as mobile applications. In this sense, most of DSPL ap-

roaches share some common capabilities and goals with the Auto-

omic Computing (AC) paradigm (IBM, 2005) such as the monitoring

f the environment and the generation of successive configurations.

http://www.sei.cmu.edu/productlines/
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Fig. 1. Feature model example.
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2 FaMa Tool Suite, http://www.isa.us.es/fama/
3 Hydra project website, http://caosd.lcc.uma.es/spl/hydra/
4 S. P. L. O. T.: Software product lines online tools, http://www.splot-research.org/
2.2. Feature models

As we already stated in the Section 2.1, the variability model is the

central artifact of both SPLs and DSPLs. Feature models are widely

used for modeling variability in SPLs. Although they are typically

used in the requirements specification phase, they can be success-

fully applied to manage variability in other phases of the software

development life cycle (Acher et al., 2011; Morin et al., 2009). FMs

are organised in a hierarchical structure (Fig. 1), where each feature is

decomposed into children features, which can be connected to their

parent individually using optional/mandatory connectors (if the child

feature is optional/mandatory) or in groups (an OR group if one or

more child features can be selected or an XOR group if only exactly

one child feature can be selected). Selecting a feature means that its

parent should be selected too.

Fig. 1 shows the FM of a game for mobile devices.The root

feature, MobileGame, is decomposed in the Sound, Connectivity,

GraphicsQuality, GlobalScoreboard and Multiplayer features.

While the GraphicsQuality feature is mandatory and thus has to

be included in all the generated configurations, the rest of them are

optional—i.e., they are variation points. The Network and Bluetooth
features are part of an OR group, meaning that one or both of them

can be selected simultaneously, while the LocalMultiplayer and the

OnlineMultiplayer features are in an XOR group, and thus only ex-

actly one of them can be part of a particular configuration.

In addition to the relationships between features shown in the

tree (i.e., the tree constraints), it is also possible to specify Cross-

Tree Constraints (CTCs) between features. In some cases, these CTCs

are specified as A requires B or A excludes B statements. The first

one states that, in the case that feature A is selected in a particular

configuration of the FM, feature B should also be included. The sec-

ond one states that the features A and B are mutually exclusive and,

therefore, they cannot be selected simultaneously in the same FM

configuration.

CTCs can also be defined in Conjunctive-Normal-Form (CNF) nota-

tion, which allows to define more complex constraints. In CNF, CTCs

are expressed as a conjunction of clauses, where a clause is a disjunc-

tion of positive and negative literals (features); otherwise expressed,

the set of CTCs is specified as a logical AND of ORs. For instance, the
TC #3 in Fig. 1 states that, in the case that the OnlineMultiplayer fea-

ure is selected, it is necessary to select the HSPA, LTE or WiFi features:

nlineMultiplayer =⇒ HSPA ∨ LTE ∨ WiFi (1)

Thanks to the extensive use of FMs, it is possible to take advan-

age of their wide support (Acher et al., 2010; Benavides et al., 2010;

atinlassi, 2004; White et al., 2009a) and the existing tools (e.g.,

AMA,2 Hydra,3 SPLOT,4 FeatureIDE; Kastner et al., 2009). Moreover,

Ms are specified using formal languages, as for instance CSP (Con-

traint Satisfaction Problems) (Tsang, 1993). This means that the vi-

ual representations of FMs are only for the purpose of facilitating the

riting and understanding of the FMs, but then the existing tools au-

omatically map this graphical representation into a CSP specification.

his allows reasoning about variability, as well as other capacities of

Ms such as the generation of valid product configurations, the quan-

ification of the number of possible configurations, etc. (Benavides

t al., 2010).

. Related work

In this section we discuss the existing DSPL approaches which

re closest to our work, identifying and commenting the differences

etween them. Moreover, we also present those approaches that use

volutionary algorithms in the domain of SPLs or DSPLs.

.1. Overview of DSPL approaches

As stated in Section 2.1, there are important differences among

he DSPL approaches that are available in the literature. The most

elevant differences can be categorized as follows:

1. The moment when the valid configuration space is generated.

2. The decision making process used to trigger a reconfiguration.

3. The optimization criteria used to generate the successive config-

urations, if any is used.

http://www.isa.us.es/fama/
http://www.isa.us.es/fama/
http://caosd.lcc.uma.es/spl/hydra/
http://caosd.lcc.uma.es/spl/hydra/
http://www.splot-research.org/
http://www.splot-research.org/
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Table 1

DSPL approaches.

Approach Generation of configuration Decision making Optimization mechanism Mobile devices

Dinkelaker et al. (2010) Design time Design time plans None No

Rouvoy et al. (2009) Design time Utility function Brute force/heuristics Yes

Shen et al. (2011) Design time ECA rules None No

Rosenmüller et al. (2011) Partially runtime Manual/ECA rules None No

White et al. (2007) Partially runtime Cost function CSP solver Yes

Cetina et al. (2008) Runtime ECA rules None No

Trinidad et al. (2007) Runtime Manual None No

Our approach Runtime Multiobjective function MOEA Yes
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4. The suitability of the approach for developing applications for

mobile devices.

In the rest of this section we discuss how these issues are ad-

ressed by the compared DSPL approaches. The results of the study

re summarized in Table 1, where there is a column for each discussed

ssue.

.1.1. Generation of the valid configuration space

As can be seen in Table 1, some DSPL approaches generate at design

ime the configurations that are then deployed at runtime (Dinkelaker

t al., 2010; Rouvoy et al., 2009; Shen et al., 2011). However, since the

otential number of configurations can grow exponentially, some of

hese approaches consider at runtime only a subset of the valid config-

rations, which are pre-loaded into the system. This is an important

rawback, especially in our case where one of the goals is to generate

ptimal configurations. It is very difficult to ensure at design time

hat the list of pre-loaded configurations includes the optimal ones

ccording to the defined objectives and possible context changes.

There are other DSPLs that generate the configurations partially

t runtime (Rosenmüller et al., 2011; White et al., 2007) or com-

letely at runtime (Cetina et al., 2008; Trinidad et al., 2007). On the

ne hand, White et al. (2007) specify, using a domain specific mod-

ling language, the components of the product line architecture for

obile devices, their dependencies and composition rules and the

on-functional requirements of each component. These models are

hen converted into a CSP, allowing the generation of configurations

t runtime using a CSP solver. This cannot be considered a completely

untime approach because even though the CSP solver is used to gen-

rate at runtime a customized version of the application based on

he available resources on the mobile device, this approach does not

rovide a mechanism to adapt the application installed in the mobile

evice at runtime. Instead, when changes in the application configu-

ation are needed, the application needs to be stopped and initiated

gain with the new configuration.

Also the approach of Rosenmüller et al. (2011) is partially at run-

ime approach. Firstly, part of the variability of the SPL is reduced at

esign time, generating several DSPLs which are subsets of the com-

lete SPL. Then, an adaptation mechanism is included in each DSPL

hat is capable of generating different configurations of that DSPL at

untime.

Regarding the runtime approaches, Cetina et al. (2008) propose a

odel driven approach for modeling pervasive systems, where the

ariability information is introduced by means of model transforma-

ions, enabling the runtime reconfiguration according to the execu-

ion context. Then, using a model reasoner they can generate valid

onfigurations at runtime, although only a proof of concept has been

roposed for this model reasoner. In the proposal of Trinidad et al.

2007), each feature in the FM is mapped to a component in the soft-

are architecture than can be activated or deactivated. Then, using a

SP solver, they perform real-time FM analysis and therefore generate

alid configurations at runtime.

Our approach can generate at runtime any of the configurations

hat are part of the valid FM configuration space. Concretely, the FM
onfigurations are generated on demand using an MOEA, which is

xecuted on the mobile device. The software architecture reconfig-

ration plan is then calculated as the difference between the cur-

ent and the new FM configuration generated by the optimization

lgorithm.

.1.2. Decision making process

Regarding the decision making process, some DSPL approaches

re based on the definition of a set of event-condition-action (ECA)

ules (Cetina et al., 2008; Shen et al., 2011). An ECA rule includes the

vent that triggers a reconfiguration, a condition about the system

tate that must be evaluated as true, and the reconfiguration plan or

ctions that should be executed. The main problem with this approach

s that the number of rules could become intractable, especially if

he number of potential configurations is high. Moreover, during the

pecification of the ECA rules it is very difficult to identify and list all

he possible events and conditions that may later occur in the system

t runtime.

Goal-based approaches, such as White et al. (2007) and Rouvoy

t al. (2009) and our approach, overcome this problem since they do

ot need to enumerate all the “context change–product configura-

ion” pairs at design time. Instead, these approaches use a ‘function’

o calculate the cost or utility of each generated configuration. The

ain restriction of these approaches, which is crucial for an approach

hat has to be used at runtime, may be that this is done at the cost of

ore runtime overhead. In the work of White et al. (2007), a cost func-

ion, which measures the cost regarding a given criteria (e.g., mobile

ata consumption) is optimized according to the available resources.

hen, at runtime, the variant with the lowest cost and that does not

xceed the available resources is generated.

In the MUSIC middleware of Rouvoy et al. (2009), an utility func-

ion, which typically refers to the user’s overall satisfaction, is defined

o decide which is the most appropriate configuration from among

he set of valid ones.

In the work of Trinidad et al. (2007), a CSP solver is used to reason

bout the configuration proposed by the user, being able to deter-

ine whether it is valid or not, among other operations. However,

n automated decision making mechanism is not provided, being the

ser responsible for manually proposing new configurations.

In our approach, we use a multiobjective function that specifies

ultiple objectives to be optimized, such as the battery consumption

r usability. This is done by specifying the “contribution” to these

bjectives of each feature in the FM.

.1.3. Optimization mechanism

Those approaches including a goal-based decision making process

Rouvoy et al., 2009; White et al., 2007, and our approach) need a

echanism to find which is the best configuration according to the

oal(s) at runtime. Firstly, in the MUSIC middleware (Rouvoy et al.,

009), it is possible to decide, at design time, which optimization al-

orithm is applied to select the most appropriate configuration for

he current execution context. Concretely, it is possible to choose be-

ween brute force, in which all the valid configurations are evaluated,

nd some heuristics which reduce the solution space. However, both
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Table 2

Optimization algorithms for FMs.

Approach Objectives Mobile CTCs

Li et al. (2012) Single N/A Limited

Benavides et al. (2005) Single No No

Djebbi et al. (2007) Single No Limited

Soltani et al. (2012) Single No Yes

White et al. (2009a) Single Yes Yes

Shi et al. (2010) Single Yes Limited

Guo et al. (2011) Single Yes Limited

Sayyad et al. (2013) Multiple No Yes

Our approach Multiple Yes Yes

m
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e

e
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3
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options have limitations. On the one hand, the use of the brute force

requires the generation of all the valid configurations, which is a very

time consuming task. On the other hand, the use of heuristics may

leave out of the solution space the best configurations.

Secondly, in White et al. (2007), a variant engine selection, which

uses a CSP solver to generate optimal configurations, is executed on

a server computer. Then, when the application is being deployed in a

particular mobile device, the resources available in the device, such

as WiFi capability, CPU, RAM memory or resolution, are sent to the

variant selection engine. The CSP solver discards those configurations

which are not suitable for that device in particular, generating then

the one which optimizes a cost function. Finally, the generated config-

uration is deployed in the mobile device. As seen, the use of the CSP

solver to generate an exact solution is too costly as to be run in the

mobile and the requirement of using a server computer reduces the

usability of the approach.

Finally, in our approach, as stated before, we use an MOEA, which

efficiently generates valid configurations that are optimal regarding

several criteria. Therefore, our approach does not depend on a net-

work connection to an external server to offload the execution of the

optimization algorithm. Instead, our goal is to choose an algorithm

efficient enough as to be directly executed on the mobile devices.

The use of a multiobjective optimization mechanism to automate

the generation of variants of an application at runtime is not spe-

cific to DSPL approaches. In other domains, such as Service-Oriented

Architectures (SOAs), multiobjective optimization heuristics are also

used for the efficient selection and composition of services based on

QoS and other system attributes (Canfora et al., 2008; Mirandola et al.,

2014; Wada et al., 2012; Yao and Chen, 2009).

3.1.4. Suitability for mobile devices

As can be seen in Table 1, most of the DSPL approaches are not

suitable for mobile devices. This is the case of the work of Dinkelaker

et al. (2010), as well as the work of Cetina et al. (2008), which are

based on a models@runtime approach, the main drawback of which

is that the management and transformations of models at runtime is

too costly to use in a mobile device.

The proposal of Shen et al. (2011) is based on JBoss AOP (Hat, 2010),

which is not available in mobile devices. The reason for this limitation

is that JBoss AOP relies on cglib, a Java library for runtime bytecode

generation which is not available in Java virtual machines for mobile

devices such as Dalvik, the virtual machine used in the Android oper-

ating system. However, although the use of JBoss AOP in mobile de-

vices is not feasible, other AOP languages, such as AspectJ (GoPivotal,

2014), can be used in these devices.

In the approach presented by Trinidad et al. (2007), a CSP solver

is used to reason about the variability of the DSPL and, therefore, it is

not appropriate for mobile devices. This is also the case of the work

of Rosenmüller et al. (2011), which uses a SAT solver to reconfigure

the applications at runtime. The use of a CSP or a SAT solver has the

advantage of generating exact solutions to the optimization problem

but at the cost of requiring more computational time, which is an

important limitation in the case of mobile applications.

One approach that is suitable for mobile devices is the MUSIC

middleware (Rouvoy et al., 2009). This middleware runs on top of the

OSGI platform, which can be executed on mobile devices. Further-

more, a mobile version of the MUSIC middleware for Android devices

is available, although it is no longer maintained.

Finally, the approach of White et al. (2007) can generate variants

at runtime for mobile devices. However, the variant selection engine

needs to be executed in a server and the execution time of the CSP

solver is very high (more than 35 s). Therefore, this approach is ap-

propriate for the initial deployment of an application’s variant which

meets the requirements of a mobile device in particular, but not for

optimizing the application according to the execution context of the
mobile device.
In our approach, since we specifically focus on mobile devices, we

ust use an evolutionary algorithm that is efficient enough as to be

ctually executed on mobile devices. In order to achieve this goal, the

xecution time is one of the criteria we have used to select the differ-

nt evolutionary algorithms considered in this paper, as explained in

ection 6.

.2. Optimization algorithms for FMs

Those DSPL approaches which model the variability using FMs

eed algorithms to generate configurations from FMs according to a

iven criterion. These algorithms mainly differ in:

1. Efficiency for mobile device execution. In order to be suitable

for reconfiguring mobile applications at runtime, the optimiza-

tion algorithm should be very efficient regarding its execution

time. Furthermore, its implementation should be executable on a

mobile device.

2. Number of objectives. We distinguish whether the algorithm

can optimize one single objective or multiple objectives

simultaneously.

3. Cross-Tree Constraints support. We evaluate the support provided

by the algorithm to specify CTCs. We distinguish the cases in

which no support is provided, a limited support is provided (only

for A requires B or A excludes B constraints), and all CTCs are

supported.

Table 2 summarizes those approaches from Section 2.1 that use

optimization algorithms, as well as other algorithms available in the

literature for generating configurations of FMs.

Li et al. (2012) present an algorithm for transforming the prob-

lem of selecting a configuration of an FM into a 0-1 Programming

problem, which can be solved using different algorithms. Although it

does not support optimization based on an utility function, it can find

configurations which do not exceed a certain amount of resources.

With regards to CTCs, only basic CTCs are supported. Moreover, since

an evaluation of their approach is not provided, it is not possible to

assess whether it is suitable for mobile devices or not.

In the work of Benavides et al. (2005), FMs are specified as a CSP

problem. Then, a solver is used to analyze the variability of the FM,

as well as to find optimal configurations regarding a given criteria.

However, we can identify two important drawbacks to this approach:

(1) it does not support CTCs, and (2) it optimizes a problem in which

the complexity increases exponentially with respect to the number

of features, using a CSP solver. Therefore, it is not suitable for runtime

reconfiguration because the CSP solver generates an exact solution.

The work of Djebbi et al. (2007) provides support for finding op-

timal configurations of an FM regarding a given criteria, such as the

cost of implementation, allowing in addition to discard those config-

urations which do not satisfy a given set of requirements. However,

only basic CTCs are supported and the solver is implemented in GNU-

Prolog (Diaz and Codognet, 2001), which is not available for mobile
devices.
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Soltani et al. (2012) propose a method for finding configurations of

Ms taking into account functional and non-functional requirements.

o this end, Hierarchy Task Network Planning is used (Sacerdoti,

975). Although it provides full support for CTCs, it is not suitable

or mobile devices since the reconfiguration time is very high, even

hen it is executed on a desktop computer.

In the work of White et al. (2009a) Filtered Cartesian Flatten-

ng (White et al., 2008) is applied to find configurations of an FM which

re optimal regarding a single objective. It is mentioned in their paper

hat CTCs are supported, but it remains unclear which kind of CTCs are

upported as the case study provided does not contain any CTC. Their

valuation results show that their approach provides nearly-optimal

onfigurations and the execution time of the algorithm is very low.

ven having a good execution time, as just said the algorithm is not

ultiobjective. The work of Shi et al. (2010) is a slight variation of the

pproach presented by White et al. (2009a). Although it is stated that

heir proposal is faster, the conclusions appear to be contradictory

nd an evaluation comparing both algorithms is not provided.

Guo et al. (2011) specify a genetic algorithm to find nearly-optimal

onfigurations of an FM taking into account a single objective. In this

ork, valid configurations are generated using a fix operator, but

nly basic CTCs are supported. A comparison with the work of White

t al. (2009a) is provided, and the results show that the execution

ime of the algorithm of Guo et al. is lower, but at the cost of gener-

ting slightly worse configurations. Once again, it is not valid for our

urposes because it is a single objective algorithm.

Finally, Sayyad et al. (2013) use several MOEAs that are exten-

ively used to find configurations of FMs, which can be optimized

egarding different criterion simultaneously. In this work, all CTCs

re supported, and a fix operator is also used, but for a different pur-

ose. In our approach, as well as in the approach of Guo et al. (2011),

he goal of our fix operator is to repair an infeasible configuration,
Fig. 2. Approach
enerating a valid one. However, the goal of the feature fixing op-

rator of Sayyad et al. is to ensure that a list of features, which are

ommon to all the valid configurations, are going to be present in all

he possible configurations generated by the MOEA. As a result, in-

alid configurations are also generated, which are not useful for our

urpose. Finally, as will be shown in Section 5, in the work of Sayyad

t al., as well as in our approach, a seeding technique is applied to

enerate the initial population.

. Dynamic reconfiguration approach

In this section, we explain our overall DSPL approach, describing

hose tasks which are performed at design time and those which are

erformed at runtime. Then, given that MOEAs are a central part of

ur dynamic reconfiguration service, we explain how we formally

pecify FMs and how we encode them in order to be used as input for

hese algorithms. We use MOEAs in our approach because they enable

he efficient generation of valid configurations at runtime. However,

here are other types of algorithms, such as anytime algorithms (Carlin

nd Zilberstein, 2011; Hansen et al., 1997), that could be used for this

urpose. To the best of our knowledge, the application of these kinds

f algorithms to the domain of our paper has not been explored yet,

o we plan to study them as part of our future work in order to assess

hether they yield better results.

Finally, we describe briefly our fix operator, which is used to

dapt MOEAs and ensure that only valid configurations are generated

t runtime.

.1. Approach overview

Fig. 2 summarizes our approach. Firstly, variability modeling us-

ng FMs and the optimization criteria are defined at design time. The
overview.
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Fig. 3. Specification and evaluation of CTCs.
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FM determines exactly which configurations can be deployed at run-

time, and the optimization criteria provide the information used at

runtime to decide which configuration fits best the current execution

context. The optimization criteria can comprise both functional and

non-functional properties of the application such as usability, battery

consumption, memory usage, CPU usage, bandwidth usage, etc.

At runtime, a loop is executed which consists of the following

actions:

1. Monitor and analyse the context. The relevant context information

(e.g., battery level, available memory, network state) is monitored

and the gathered data are analyzed in order to determine whether

it is necessary or not to reconfigure the mobile application.

2. Generate feature model configuration. When the context has

changed and a reconfiguration is needed, a multiobjective evo-

lutionary algorithm is executed, which generates a set of configu-

rations of the FM which are optimal with regards to different op-

timization criteria. Then, the Decision Maker decides, from among

this set of configurations, which one fits best the current execution

context.

3. Load new feature model configuration. The configuration of the FM

which has been generated in the previous step is deployed, re-

placing the previous one. To this end, the differences between

both configurations(FMconf1 and FMconf2) are calculated. As will

be shown in Section 4.2, we encode the FM configurations as an

array of boolean variables. Therefore, the differences between the

previous configuration and the new one can be easily found by

applying an XOR operation. Then, in order to ensure that the re-

configuration process is performed flawlessly, all the components

are placed in a safe state before they are reconfigured. The changes

in the configuration are then applied to the software architecture

and the execution is resumed. As a result, the mobile application

is now adapted to the current context. More details about the

deployment of new configurations in our approach can be found

in Pascual et al. (2014).
 t
.2. Formal specification and encoding of FMs

In order to use evolutionary algorithms for generating configu-

ations of FMs, we need to formally specify FMs, including features,

ree constraints and cross-tree constraints. This specification allows

n efficient access to all the information about the FM.

The features of the FM are represented as a set F = {fi, . . . , fn},

here n is the number of features in the FM. Then, a configuration of

he FM can be defined as a subset of features S = {fi | fi ∈ F ∧ 1 ≤ i ≤
≤ n}, where s is the number of selected features.

The tree constraints are modeled by the following functions and

ets:

1. The function Parent(f ), which returns the parent of each feature

f ∈ F, or nil in the case that f is the root feature.

2. The functions BOR(f ) and BXOR(f ) which return, for each feature

f ∈ F, the features which are included in an OR or XOR group,

respectively, together with f . In the case that f is not in a group,

BOR(f ) and BXOR(f ) are empty sets. For instance, in the FM shown

in Fig. 1:

BXOR(HSPA) = {EDGE, HSPA, LTE, WIFI}
BOR(Network) = {Network, Bluetooth}

BXOR(Sound) = BOR(Sound) = ∅.

3. The set M = {f1, . . . , fm}, which contains all the mandatory fea-

tures.

The cross-tree constraints are represented in CNF notation, as

hown in Section 2.2. The set of CTCs is modeled by the set C =
ci, . . . ck}. Each constraint ci is then a clause ci = {Cip, Cin}, where

ip = {fp | fp ∈ F ∧ 0 ≤ p ≤ np} and Cin = {fn | fn ∈ F ∧ 0 ≤ n ≤ nn}, be-

ng np and nn the number of positive and negative literals, respec-

ively. Then, according to this notation, a configuration S satisfies a

TC ci = {Cip, Cin} if and only if Cip ∩ S 
= ∅ ∨ Cin ∩ (F − S) 
= ∅.

Fig. 3 shows how the CTCs of the FM in Fig. 1 are specified, and

he results of evaluating them for a configuration S (which is invalid)
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Fig. 4. Example of configuration repaired by the fix operator.
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Algorithm 1 NSGA-II with the fix operator.

Require: Psize, pcrossover, pmutation, evalmax

Ensure: PF (a set of nondominated solutions)

1: P = ∅
2: evaluations = 0

3: for i = 1 to Psize do

4: s = NewSolution()

5: s = Fix(s)

6: EvaluateFitness(s)

7: evaluations = evaluations + 1

8: P = P + s

9: end for

10: while evaluations < evalmax do

11: PO = ∅
12: for i = 1 to Psize/2 do

13: parents = Selection(P)

14: offspring = Crossover(parents, pcrossover)

15: offspring = Mutation(offspring, pmutation)

16: offspring = Fix(offspring)

17: EvaluateFitness(offspring)

18: evaluations = evaluations +1

19: PO = PO+ offspring

20: end for

21: P = P
⋃

PO

22: RankingAndCrowdingDistance(P)

23: end while

24: PF = BestFront(P)

i

s

i

b

B
t

t

n particular. For each CTC, we check, on the one hand, which posi-

ive literals are selected in S and, on the other hand, which negative

iterals are not selected in the configuration. As can be seen, the set

f not selected features is defined as F − S. Firstly, in the case of CTC

1, GlobalScoreboard is selected in S but not Network and, as a re-

ult, the configuration S does not satisfy CTC #1. Secondly, CTC #2 is

atisfied because Bluetooth, which is required by LocalMultiplayer,

s selected. Lastly, CTC #3 is satisfied because OnlineMultiplayer is

ot selected in S.

Configurations need to be encoded in a way which can be managed

y an evolutionary algorithm. To this end, we encode a configuration

f an FM as an array of n boolean variables, one for each feature, being

RUE in the case that the feature is selected and FALSE otherwise.

.3. The fix operator

During the execution of evolutionary algorithms, solutions are

enerated randomly by applying the selection, crossover and muta-

ion operators. When a configuration of an FM is generated in this

ay, there is a high probability that it does not satisfy the tree and

ross-tree constraints, rendering it invalid. In our approach, invalid

onfigurations are not useful, thus we need a mechanism to prevent

he evolutionary algorithm adding invalid configurations to the pop-

lation. To this end, we have specified a fix operator which takes as

nput a configuration of an FM, which may be invalid, and applies the

ecessary transformations, returning as output a configuration which

s valid regarding the tree and cross-tree constraints of the FM. The

ix operator is executed each time the algorithm generates a new

onfiguration, once the mutation operator has been applied.

Algorithm 1 shows the pseudocode of the NSGA-II (Deb et al.,

002) algorithm with the fix operator. During the generation of the

nitial population (Lines 3–9), each time a new solution is randomly

enerated, the fix operator is applied, transforming the invalid con-

guration of the FM into a valid one. Then, the algorithm can evaluate

ts fitness and add it to the population. Moreover, during the evolu-

ion process (Lines 10–23), each time a new offspring is generated as

result of selecting two solutions from the population, recombining

hem and applying a mutation operation, it is also repaired using our

ix operator, its fitness is evaluated and it is added to the offspring

opulation. All the details of the fix operator are available online.5

In the rest of this section, we describe briefly how the fix operator

s able to repair an invalid configuration. The operator takes as input

set of features S which represents an invalid configuration. Then,

t generates a new valid configuration taking as many features from

as possible. First, it focus on satisfying the tree constraints. To this

nd, for each feature f ∈ S, the fix operator recursively adds to the

onfiguration, as needed, the following features:
5 http://caosd.lcc.uma.es/projects/famware/tools.htm
1. The parent of f, Parent(f ).
2. The mandatory child features of f , which are those features fc ∈

M | Parent(fc) = f .

3. A feature in each OR/XOR group of f , which are the features fg |
P(fg) = f ∧ BOR(fg)

⋃
BXOR(fg) 
= ∅.

Then, the fix operator modifies the configuration in order to sat-

sfy the cross-tree constraints. To this end, for each cross-tree con-

traint ci = {Cip, Cin}, in the case that it is not satisfied, a feature fp ∈ Cip

s added to the configuration.

Fig. 4 shows an example of an invalid configuration transformed

y the fix operator. The initial configuration contains only the

luetooth, Quality, 192kbps and GlobalScoreBoard features. Al-

hough this configuration is invalid, it is fixed in several steps by

he fix operator:

1. The feature Bluetooth is selected but not its parent. Then, its

parent Connectivity is selected and, since this operation is exe-

cuted recursively, the parent of Connectivity, which is the feature

MobileGame, is also selected.

http://caosd.lcc.uma.es/projects/famware/tools.htm
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Table 3

Feature model corpus.

Name Features Configurations

1 x264 17 2048

2 Wget 17 8192

3 Berkeley DB Memory 19 3840

4 Sensor Network 27 19152

5 Mobile Game 33 9198

6 Tank War 37 1,741,824

7 Mobile Media 43 2,128,896

8 Mobile Visit Guide 51 33,800,000

9 SPLOT-3CNF-500 500 3.779e15

10 SPLOT-3CNF-1000 1000 1.638e131

11 SPLOT-3CNF-2000 2000 N/A

12 SPLOT-3CNF-5000 5000 N/A

Table 4

Evolutionary algorithms settings.

Algorithm Parameters

NSGA-II Population size = 100

IBEA Population size = 100

Archive size = 100

MOCHC Population size = 100

Initial convergence count = 0.25

Preserved population = 0.05

Convergence value = 3

MOCell Population size = 100

Archive size = 100

Feedback = 0.1

PAES Archive size = 100

Bisections = 5

SPEA2 Population size = 100

Archive size = 100

M

c

5

f

A

e

w

2

o

a

F

o

t

i

2. When MobileGame is selected, the fix operator detects that a

mandatory child feature, GraphicsQuality, is not selected. There-

fore, GraphicsQuality is added to the configuration and, recur-

sively, a feature from its child XOR group. In this case, the Medium
feature has been randomly selected.

3. The feature Quality is selected but not its parent. Therefore, the

fix operator adds the feature Sound to the configuration.

4. Once these features have been selected, the configuration now

satisfies the tree constraints. However, CTC #1 is not satisfied

because GlobalScoreboard is selected but not Network. In order

to satisfy the CTC, the fix operator adds the Network feature to

the configuration and, recursively, a random feature from its child

XOR group is also selected (WiFi in this case).

5. Experimental setup

In this section we describe how our evaluation was carried out:

the selection of feature models and its attributes, the selected MOEAs

and the evaluation process.

5.1. Feature model corpus and selected attributes

For the evaluation of the search algorithms we have selected 12

FMs, varying in size and complexity and including CTCs. Firstly, FMs

1–8 model the variability of actual SPLs, including some SPLs for mo-

bile devices (FMs 5, 7 and 8). Secondly, FMs 9–12 have been randomly

generated and include more features that found in typical SPLs for mo-

bile devices. However, they have been selected to evaluate the scala-

bility of our approach. All these FMs have been made publicly avail-

able by their authors at the main SPL-related websites such as SPLOT

(see footnote 4, SPL Conqueror (von Guericke University Magdeburg,

2013b), and SPL2go (von Guericke University Magdeburg, 2013a).

These FMs have also been described in papers published within the

SPL community. Table 3 shows the number of features as well as the

number of configurations.6 However, in the case of FMs 11 and 12,

to the best of our knowledge, it remains an open question how to

efficiently calculate the number of configurations.

We extended these FMs with the following three attributes:

1. Usability. Usability measures, among others, how easy and satis-

fying to use is the application. It takes real values between 0 and

10, according to a normal distribution.

2. Battery consumption. Models the increase in battery consumption,

measured in milliamps, introduced by the feature. It takes real

values between 10.0 and 20.0 according to a normal distribution.

3. Memory footprint. Models the additional memory footprint, in

megabytes, introduced by the feature. It takes real values between

0.0 and 10.0 according to a normal distribution.
6 The values for FMs 9 and 10 were computed with the SPLAR library provided at

SPLOT website. K
These attributes represent our optimization objectives. Thus the

OEAs we selected should: maximize usability, minimize battery

onsumption and minimize memory usage.

.2. Multi-objective evolutionary algorithms

We evaluated the following six MOEAs, available in the jMetal

ramework (Durillo and Nebro, 2011):

1. Nondominated Sorting Genetic Algorithm II (NSGA-II; Deb et al.,

2002).

2. Indicator-based Evolutionary Algorithm (IBEA; Zitzler and Künzli,

2004).

3. Multiobjective Cross generational elitist selection, Heterogeneous

recombination, Cataclysmic mutation (MOCHC; Nebro et al.,

2007).

4. Cellular Genetic Algorithm for Multiobjective Optimization

(MOCell; Nebro et al., 2009).

5. Pareto Archived Evolution Strategy (PAES; Knowles and Corne,

2000).

6. Strength Pareto Evolutionary Algorithm, version 2 (SPEA2; Zitzler

et al., 2001).

Our fix operator was added to these algorithms, as illustrated in

lgorithm 1.

Furthermore, in order to improve the quality of the solutions gen-

rated by these MOEAs, we have also applied a seeding technique,

hich has been used previously in the literature (Fraser and Arcuri,

012; Sayyad et al., 2013). Specifically, the seeding technique used in

ur approach works as follows:

1. A valid configuration (the seed), which includes around 50% of the

features in the FM, is pre-computed for each FM.

2. The initial population is filled using the seed:

(a) A mutation is introduced in the seed.

(b) The resulting configuration is repaired using the fix operator.

(c) The fixed configuration is added to the initial population.

The crossover operator applied was the Single-Point Crossover, with

crossover probability of 0.8. With regards to the mutation, the Bit

lip Mutation operator is applied with a probability of 0.1. The number

f allowed fitness evaluations is 5000 for all the algorithms. The rest of

he settings, which depend on the algorithm in particular, are detailed

n Table 4. We have principally chosen values for these settings that

are commonly used in the literature (Sayyad et al., 2013) or are default

values on the jMetal framework (Durillo and Nebro, 2011). Although

an exhaustive optimization of these settings has not been performed,

they have proven to provide good results. Furthermore, as suggested

by Arcuri and Fraser (2013), and confirmed in Kotelysanskii and

apfhammer (2014), tuned parameters can improve upon default
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Table 5

HV. Median and IQR.

NSGA-II IBEA MOCHC MOCell PAES SPEA2

x264 0.442.5e−4 0.430.0e+0 0.355.8e−2 0.442.0e−4 0.441.0e−2 0.442.4e−4

Wget 0.493.1e−3 0.480.0e+0 0.368.9e−2 0.492.0e−3 0.471.2e−2 0.499.2e−4

Berkeley DB Memory 0.517.0e−3 0.511.2e−4 0.381.2e−1 0.512.4e−3 0.501.6e−2 0.514.7e−3

Sensor Network 0.343.0e−2 0.383.7e−2 0.213.5e−2 0.353.2e−2 0.253.2e−2 0.333.4e−2

Mobile Game 0.283.8e−2 0.325.9e−2 0.116.2e−2 0.044.5e−2 0.244.2e−2 0.273.8e−2

Tank War 0.491.8e−2 0.531.9e−2 0.387.1e−2 0.491.8e−2 0.425.0e−2 0.491.9e−2

Mobile Media 0.403.6e−2 0.464.0e−2 0.235.5e−2 0.413.6e−2 0.364.3e−2 0.403.8e−2

Mobile Guide 0.431.3e−2 0.451.1e−2 0.333.7e−2 0.421.5e−2 0.365.8e−2 0.431.6e−2

SPLOT-3CNF-500 0.321.6e−2 0.351.8e−2 0.303.8e−2 0.107.0e−2 0.314.6e−2 0.311.6e−2

SPLOT-3CNF-1000 0.191.7e−2 0.191.7e−2 0.344.5e−2 0.131.3e−2 0.214.8e−2 0.181.5e−2

SPLOT-3CNF-2000 0.231.5e−2 0.221.4e−2 0.332.9e−2 0.191.9e−2 0.223.3e−2 0.221.3e−2

SPLOT-3CNF-5000 0.289.8e−3 0.222.3e−2 0.302.1e−2 0.221.3e−2 0.221.9e−2 0.222.9e−2
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alues generally, but they are far from optimal in individual prob-

em instances. Therefore, the objective of this paper is not tuning the

alues to improve the performance on particular algorithms and FMs,

ut comparing the MOEAs using default parameter values.

.3. Evaluation process outline

The evaluation process was divided in two stages. The goal of the

rst stage was to assess which MOEA yields better results in regard to

he quality of the solutions generated and the execution time. To this

nd, we performed 1000 independent runs for each algorithm and

eature model and compared their results using two standard quality

ndicators. These runs were executed in a desktop computer, with

n Intel Core i7-4700K CPU at 3.5 GHz and 16 GB of RAM memory

unning Ubuntu 13.10. We performed a set of statistical analysis to

elp us select the best algorithm.

The goal of the second stage was to evaluate the performance of

hese MOEAs on an actual mobile device. To this end, we developed an

ndroid application, which is available for download,7 which allowed

s to execute the MOEAs shown in Section 5.2 over a set of feature

odels previously copied to the storage of the mobile device. Using

his application it is also possible to configure some parameters of

he algorithms and the evaluation process such as the population

ize, the number of fitness evaluations or the number of independent

uns. When the evaluation process is finished, the mobile application

enerates a set of output files containing the execution time for each

ndependent run of the experiment, as well as the results of the quality

ndicators. Statistical tests are then applied to these results using a

esktop computer. In particular, we executed 100 independent runs

or each feature model and for each MOEA on an LG Nexus 5 device

unning Android 4.4.3. The next section describes the results obtained.

. Experiment results

In this section we show and analyze the results obtained in the ex-

eriment. Firstly, we compare the fronts obtained by each algorithm

sing two standard quality indicators, Hypervolume and Generational

istance, with the purpose of identifying which MOEA performs best

or our purpose. Secondly, we analyze the execution time for each

OEA and for each FM, in order to know which MOEAs are more

fficient and whether their efficiency depends on the size of the FM.

hirdly, we compare the objectives’ values obtained in the initial pop-

lation with the values obtained in the final front. This allows us to

uantify easily how the fitness of the population evolves along the

xecution of the algorithm. Fourthly, we apply the Mann–Whitney8

test (Mann and Whitney, 1947) and the Â12 statistic (Vargha and

elaney, 2000) to the values of these metrics to assure that the dif-

erences identified are statistically meaningful. Lastly, we execute
7 http://caosd.lcc.uma.es/projects/famware/tools.htm
8 This statistical test is equivalent to the Wilcoxon Rank-Sum test.

p

v

T

he MOEAs on a mobile device, evaluating whether they are efficient

nough for the dynamic reconfiguration of mobile applications.

.1. Quality indicators

We have selected two quality indicators that are commonly ap-

lied in multiobjective evolutionary algorithms, Hypervolume and

enerational Distance. Firstly, these quality indicators and the re-

ults obtained are presented in Sections 6.1.1 and 6.1.2. Secondly, the

onclusions drawn from the results are shown in Section 6.1.3.

.1.1. Hypervolume

The Hypervolume (HV) indicator calculates the volume in the ob-

ective space covered by the members of a non-dominated set of

olutions Q (Zitzler and Thiele, 1999). For each solution i ∈ Q , a hy-

ercube vi is computed from a reference point and the solution i as

he diagonal corners of the hypercube. The reference point can be

ound by constructing a vector of worst objective function values. The

ypervolume is calculated as:

V = volume

⎛
⎝

|Q|⋃
i=1

vi

⎞
⎠

The result of this indicator is affected by the scales of the objectives.

herefore, before calculating its value, it is necessary to perform a

ormalization procedure. In jMetal, all the objectives values in the

areto front are normalized before calculating the HV. Higher values

or HV are desirable, because a wider set of non-dominated solutions

an be obtained.

Table 5 shows the median and the interquartile range (IQR) of the

V values obtained when the multiobjective evolutionary algorithms

re applied to our FMs. Each row contains the values obtained for

ach FM, being the best values highlighted with a dark background.

.1.2. Generational distance

Sarker and Coello Coello (2002) show that Generational Distance

GD) helps to assess the quality of the results obtained by MOEAs.

ore concretely, this quality indicator shows how far, on average,

he front Q is from the Pareto front (Van Veldhuizen, 1999). It is

efined as:

D(Q) = 1

n

√√√√
n∑

i=1

di
2

here n is the number of points in Q and di is the Euclidean distance

etween each point in Q and the nearest solution in the Pareto front.

Lower values for GD are desirable, since this means that the ap-

roximated Pareto front Q is closer to the true Pareto front, and a

alue of 0 indicates that all the points in Q are in the Pareto front. In

able 6, the median and the IQR of the GD values are shown.

http://caosd.lcc.uma.es/projects/famware/tools.htm
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Table 6

GD. Median and IQR (multiplied by 1e+3).

NSGA-II IBEA MOCHC MOCell PAES SPEA2

x264 0.000.00 0.000.00 4.026.10 0.000.00 0.741.80 0.000.00

Wget 0.910.27 0.000.00 7.517.60 0.810.21 1.170.59 0.730.26

Berkeley DB Memory 0.220.56 0.000.00 5.669.50 0.000.68 0.540.96 0.000.44

Sensor Network 1.231.90 0.250.68 1.921.10 1.321.80 2.120.87 1.291.40

Mobile Game 2.411.70 1.001.60 3.842.90 36.3030.00 2.691.20 2.191.40

Tank War 2.080.67 0.370.31 4.663.20 2.360.68 3.060.88 2.090.63

Mobile Media 2.961.20 1.371.00 7.115.00 3.121.20 3.891.40 2.901.10

Mobile Guide 1.580.38 0.460.23 6.002.80 1.890.45 2.690.79 1.720.37

SPLOT-3CNF-500 13.801.60 11.901.40 9.872.90 154.00180.00 10.203.00 14.701.70

SPLOT-3CNF-1000 34.104.10 36.604.70 9.513.40 62.0011.00 26.9011.00 38.404.80

SPLOT-3CNF-2000 22.902.50 24.902.70 7.112.50 38.605.70 20.307.80 26.102.60

SPLOT-3CNF-5000 12.801.60 20.203.30 4.881.70 21.102.90 16.204.10 20.104.10

Table 7

TIME. Median and IQR (in milliseconds).

NSGA-II IBEA MOCHC MOCell PAES SPEA2

x264 45.52.5 417.013.0 55.68.0 46.67.1 68.26.6 556.021.0

Wget 43.62.0 426.015.0 51.55.4 59.46.2 88.312.0 493.012.0

Berkeley DB Memory 50.94.3 432.015.0 52.62.5 48.31.3 61.13.8 526.023.0

Sensor Network 68.85.1 451.015.0. 90.711.0 84.53.3 109.06.8 611.023.0

Mobile Game 83.03.4 442.012.0 136.034.0 20.71.4 106.06.5 562.016.0

Tank War 93.76.5 481.012.0 136.026.0 96.73.2 96.37.1 454.017.0

Mobile Media 104.09.1 491.015.0 176.036.0 110.06.1 104.06.1 487.022.0

Mobile Guide 114.07.4 499.011.0 146.024.0 122.05.8 116.08.5 472.017.0

SPLOT-3CNF-500 1240.023.0 1490.025.0 2670.0250.0 892.028.0 1090.026.0 1450.020.0

SPLOT-3CNF-1000 2620.048.0 2820.032.0 5490.0520.0 2200.059.0 2350.037.0 2740.027.0

SPLOT-3CNF-2000 6570.079.0 6930.056.0 14100.01300.0 5870.0120.0 6160.0110.0 6650.060.0

SPLOT-3CNF-5000 17900.0130.0 18100.0180.0 43400.03000.0 16400.0320.0 17200.0230.0 18000.0170.0
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6.1.3. Conclusions

Firstly, we can see the HV results in Table 5:

• In the smallest FMs (x264, Wget and Berkeley DB Memory), all the

MOEAs yield similar results, except MOCHC, which covers less

volume in the objective space.
• In the following FMs, the size of which is between 27 and 51

features, IBEA covers a higher volume in the objective space than

the rest of the algorithms. In this case, MOCHC yields the worst

HV values too.
• Unlike the previous cases, MOCHC covers a higher volume in the

objective space than the rest of MOEAs in the case of large FMs. In

contrast, MOCell yields the worst results in these FMs.

Secondly, regarding GD, it can be seen in Table 6 that, for some

algorithms, especially IBEA, some of the GD values are 0. This means

that, in all the independent runs of the algorithm for a specific prob-

lem, all the solutions included in the final front were part of the Pareto

front. Taking into account the rest of values, we can see that:

• IBEA yields the best results in the case of the smaller FMs (17–51

features), which means that the configurations generated by IBEA

are closer to the optimal ones. In contrast, MOCHC yields the worst

results in the majority of these FMs.
• In the case of large FMs (500–5000 features), the solutions gener-

ated by MOCHC are closer to the optimal ones than those generated

by the rest of the MOEAs.

Therefore, taking into account both the HV and the GD quality

indicators, we can conclude that:

• IBEA generates better solutions in the case of small and medium-

sized FMs.
• MOCHC generates better solutions in the case of large FMs.

6.2. Execution time

In our work we focus on providing support for dynamic reconfig-

uration on mobile devices. Therefore, it is very important to evaluate
he time spent by the algorithms in the generation of the Pareto front.

able 7 shows the median and the IQR of the execution time measured

or each algorithm and problem.

We can see that:

• IBEA and SPEA2 are significantly slower than the rest of the MOEAs

in the case of small and medium-sized FMs. However, they scale

very well and their execution time, in the case of large FMs, is

similar to the other MOEAs.
• Although the execution time of NSGA-II, MOCHC, MOCell and PAES

is similar in the case of small and medium-sized FMs, being NSGA-

II slightly faster, we can find significant differences in the case of

large FMs:

– MOCHC does not scale well, and its execution time is very high.

However, although it is slower than the rest of the MOEAs, as

seen previously, it also generates better configurations.

– MOCell is faster than the rest of MOEAs but, as seen before,

it covers less volume in the objective space and the solutions

generated by MOCell are usually further from the Pareto front

than those generated by other MOEAs. This is especially no-

ticeable in the case of the Mobile Game feature model. In this

FM, MOCell is significantly faster than the rest of MOEAs but,

as can be seen in Tables 5 and 6, the quality of the solutions

generated by MOCell is lower than the quality of the solutions

obtained using other algorithms.

Fig. 5 shows the fraction of the execution time that is spent in the

ix operator. On the one hand, we can see that this time tends to

ncrease according to the complexity of the FM. The reason is that it

s harder to repair configurations in complex FMs and it may require

everal retries before being able to get a valid configuration. However,

ur approach focuses on mobile DSPLs, and in these cases the fix
perator yields good results, taking less than 40% of the execution

ime in the worst case (less than 10% for IBEA, less than 30% for MOCHC

nd less than 40% for PAES). Moreover, although our fix operator in

ome cases takes up an important part of the algorithm execution
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Fig. 5. Fraction of the execution time spent in the fix operator.
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30% of the time.
ime, it does not have a relevant impact on the complete execution

imes of the algorithms, which are acceptable for mobile applications.

lthough there is a peak in MOCell in the MGame FM, it is due to the

ery fast execution time of this MOEA for this FM in particular, as can

e seen in Table 7, and not due to a higher execution time of the fix
perator. On the other hand, it can be seen that the fraction of time

pent in the fix operator is significantly lower on IBEA and SPEA2 in

he case of small and medium-sized FMs, but it is similar to other

OEAs in the case of large FMs. The reason is that, as seen before,

BEA and PAES are slower than the rest of the MOEAs but scale well

ith respect to the size of the FM. Therefore, although the absolute

ime spent in the fix operator is similar to the rest of the MOEAs in

he smaller FMs, it represents a smaller fraction of the total execution

ime.

Summarizing, none of the algorithms is the best in all the problems

nd quality indicators measured. Choosing an MOEA involves a trade-

ff between the quality of the configurations and the execution time,

nd it is not straightforward to explain why some MOEAs are more

fficient or generate better solutions than others. Instead, our focus is

n: (i) demonstrating that MOEAs are efficient enough to reconfigure

obile applications; and (ii) determining which MOEAs are more

ppropriate for mobile devices (as will be shown in Section 6.4).

.3. Statistical analysis

We apply two statistical tests, Mann–Whitney U test and Â12

tatistic, which are commonly applied in randomized algorithms, to

ssure that the differences among MOEAs identified in the previous

ection are statistically meaningful (Arcuri and Briand, 2014).

.3.1. Mann–Whitney U Test

We have performed the Mann–Whitney U test in order to check

hether the differences in the distributions of values of HV, GD and
xecution time shown in Section 6.1 are statistically meaningful. The

onfidence level applied is 95%, meaning that the p-value is under

.05.

Table 8 summarizes the results of the Mann–Whitney U test ap-

lied to the HV, GD and execution time values. This table shows, for

ach pair of algorithms, which one obtains better results for each

M. We can see that the Mann–Whitney U test supports the results

hown previously which included the median values of HV, GD and

xecution time.

In regard to the quality of the generated configurations, measured

y the HV and the GD, it confirms that MOCell is usually outperformed

y the rest of the algorithms in the case of large FMs, providing nev-

rtheless, very good results on small FMs. In contrast, MOCHC shows

he opposite behavior. The Mann–Whitney U test also confirms that

he quality of the solutions generated by NSGA-II and IBEA tend to be

igher than in the rest of the MOEAs.

Finally, regarding execution time, the Mann–Whitney U test con-

rms that IBEA and SPEA2 are clearly slower than the rest of algo-

ithms in small and medium-sized FMs, but they scale well in large

Ms, outperforming MOCHC in these cases. Regarding the rest of the

OEAs, NSGA-II is usually the fastest algorithm in small FMs, but it is

utperformed by PAES and MOCell in larger FMs.

.3.2. Â12 statistic

Applying the Â12 statistic (Vargha and Delaney, 2000), called the

easure of stochastic superiority, we can assess not only which algo-

ithm yields better results but also how often. In particular, given a

erformance measure M, Â12 measures the probability that running

lgorithm A yields higher M values than running another algorithm

. If the two algorithms are equivalent, then Â12 = 0.5. If Â12 = 0.3

eans that one would obtain higher values for M with algorithm A,
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Table 9

Â12 statistical test results.

HV GD TIME

IBEA MOCHC MOCell PAES SPEA2 IBEA MOCHC MOCell PAES SPEA2 IBEA MOCHC MOCell PAES SPEA2

NSGA-II 0.462 0.652 0.570 0.594 0.513 0.612 0.401 0.410 0.439 0.490 0.265 0.395 0.510 0.430 0.268

IBEA 0.700 0.605 0.615 0.552 0.358 0.317 0.353 0.383 0.707 0.736 0.736 0.353

MOCHC 0.438 0.445 0.374 0.521 0.573 0.599 0.608 0.542 0.294

MOCell 0.483 0.427 0.536 0.589 0.416 0.264

PAES 0.433 0.555 0.264

Table 10

TIME. Median and IQR (in milliseconds).

NSGA-II IBEA MOCHC MOCell PAES SPEA2

x264 2870620 272001700 34201400 3390350 2260450 149002000

Wget 2790590 275001900 3470860 4030540 2710680 134002700

Berkeley DB Memory 3080680 276002200 3630740 3330310 2110480 132002600

Sensor Network 3300610 284001700 4860960 5210510 3480740 178003000

Mobile Game 3560700 269001900 66402400 655220 3160530 159002600

Tank War 3870770 293001700 74901900 5380460 3240520 107001800

Mobile Media 4220650 297002000 93902900 5840460 3470670 122002100

Mobile Guide 4570590 300002200 75501700 6800630 4070740 117001900

SPLOT-3CNF-500 318003100 586003400 11000016000 160004100 305002900 434003300
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Table 9 shows the Â12 values for each algorithm and metric applied

n the experiment. In regard to HV, we can see that MOCHC provides

ower (i.e., worse) values than the rest of the algorithms the majority

f the time. For instance, NSGA-II provides better HV values than

OCHC 65.2% of the cases. In contrast, IBEA yields better HV results

ost of the time (53.8% in the worst case, when it is compared to

SGA-II, and 70.0% when it is compared with MOCHC).

Regarding GD, we can see that IBEA yields the lowest (i.e., better)

esults, at least, 61.2% of the time, followed by NSGA-II. In contrast,

OCHC and MOCell yield the worse values, being outperformed by

ll the MOEAs. The rest of the MOEAs are very close when they are

ompared with each other because the Â12 values are around 0.5.

The most remarkable differences can be found in the execution

ime. It can be seen that MOCell and NSGA-II are the fastest algorithms

hile, on the other hand, IBEA and SPEA2 are clearly the slowest

OEAs.

.4. Mobile device performance

The most important criterion when choosing an algorithm for dy-

amically reconfiguring mobile applications is the execution time.

fter reviewing the current literature, we have not found a standard

r widely accepted response time for mobile applications. Moreover,

eow (2008) shows that it is not possible to clearly define a stan-

ard response time, because the response time that users would

e willing to accept depends on many factors such as the type of

urrent network connection (WiFi or 3G), the available device re-

ources such as memory or the criticality of the information being

ccessed.

Given that the CPU architecture in mobile devices is usually dif-

erent than in desktop computers (ARM instead of x86), we cannot

ssume that algorithms which run faster on a desktop computer will

lso run faster on mobile devices. Therefore, we have executed all

he algorithms in a mobile device, an LG Nexus 5 smartphone run-

ing Android 4.4.3, measuring the execution time for each one of

hem.

Table 10 shows the median and IQR of the time spent in the gen-

ration of the Pareto front for all FMs up to SPLOT-3-CNF-500. We

topped here because the times obtained for this FM indicate that for

obile applications the FMs managed should not exceed this size if a

easonable response time wants to be obtained.

We can see that, in accordance to the results shown previously

n this section, IBEA and SPEA2 are slower than the rest of the al-
orithms. Given that, in the case of these algorithms, the execution

ime is very high even when they are applied to small FMs, we can

herefore conclude that IBEA and SPEA are not suitable for the dy-

amic reconfiguration of mobile applications. In the majority of the

ases, PAES and NSGA-II are the fastest algorithms. However, as shown

reviously, the quality of the configurations generated by NSGA-II is

igher than the quality of those generated by PAES. Therefore, there

s a trade-off between execution time and the quality of the front

enerated.

Finally, although the execution time is high for large FMs such as

PLOT-3CNF-500, as stated, we are focusing on mobile DSPLs, and the

esults show that our approach is efficient enough to be executed on

SPLs for mobile devices. Furthermore, it is worth noting that these

OEAs can be executed in the background, which can significantly

educe the impact of their execution on the user experience.

. Discussion

In this section we discuss the results of the experiments shown

n Section 6, analyzing whether they fit the requirements for the

ptimization algorithm described in Section 1. Moreover, we also

iscuss the main threats to the validity of our approach.

.1. Requirements satisfaction

In Section 1 we stated that, in order to dynamically adapt mobile

pplications to the execution context, we need an optimization al-

orithm that satisfies several requirements. We discuss whether and

ow we have satisfied these requirements in our approach, taking

nto account the experimental results.

enerate only valid configurations. We have extended the MOEAs

ith a fix operator that repairs an invalid configuration of the FM,

enerating a valid one as a result. Therefore, only valid configura-

ions are added to the population during the execution of the MOEAs,

hich guarantees that the front obtained as the output of the algo-

ithms contains only valid configurations.

ultiobjective optimization support. We have satisfied this require-

ent by selecting only MOEAs. Moreover, we have demonstrated

hat the evaluated algorithms can successfully generate configura-

ions of FMs when they are augmented with three different objective
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9 http://caosd.lcc.uma.es/projects/famware/tools.htm
Fast enough execution time. In the case that the time spent in the re-

configuration of the application is too high, the user experience can

be harmed considerably, as stated in Section 6.4. In this respect, we

have seen that the fastest algorithm is PAES. For instance, in the case

of a DSPL of a mobile application with 51 features and 33,800,000

valid configurations, the execution time is about 4 s. However, there

is a trade-off between execution time and the quality of the gen-

erated configurations. For instance, NSGA-II is slightly slower than

PAES but it generates better configurations. Moreover, the use of the

jMetal framework also introduces an overhead in the execution times.

The reason is that the jMetal framework has been implemented with

the objective of being extensible and support very different types of

optimization problems, and this flexibility introduces a significant

overhead in the implementation of the algorithms. A tailor-made im-

plementation of the MOEAs, especially focused on their efficiency on

mobile devices, may reduce the execution time considerably.

Support for DSPLs in mobile applications. As stated before, in DSPLs

of mobile applications the variability degree is much lower (around

hundreds or thousands of configurations) than in SPLs at design time.

We have demonstrated that our approach is suitable for DSPLs of mo-

bile applications by applying it to FMs with up to 33 million config-

urations. We have obtained good results, showing that our approach

generates valid configurations for mobile DSPLs, optimized with re-

spect to several objectives, and with an execution time fast enough

to be used in mobile devices.

All the evaluated MOEAs satisfy all the requirements imposed by

our approach, excepting the requirement for a fast enough execution

time that it is satisfied only by some of them. Concretely, PAES and

NSGA-II are the fastest algorithms, although MOCHC and MOCell also

present acceptable execution times when they are executed at run-

time on a mobile device. Anyway, there is still place for improvement

regarding the execution times of these algorithms by generating tailor

implementations of them instead of using the jMetal framework.

Based on the results shown in Section 6, we can clearly summarize

as conclusion that: Using MOEAs is an effective and competitive alter-

native for a dynamic reconfiguration service for mobile applications.

7.2. Threats to validity

We have followed the guidelines proposed by de Olvieira Barros

and Neto (2011) in order to identify the main validity threats to our

approach and how they are addressed.

An internal validity threat is the parameter setting. In the exper-

iments we have used standard parameter values and, although the

work of Arcuri and Fraser (2013) suggests that default values might

be good enough for evaluating some search based techniques, further

research is necessary to assess whether their findings can be applied

to the SPL context. Furthermore, a sensitivity analysis on some of

these parameters would be necessary to ensure the robustness of our

approach.

We have also identified two external validity threats. The first

validity threat is the selection of the feature models used in the ex-

periments. We have addressed this threat by selecting, on the one

hand, FMs which specify the variability of real SPLs, including DSPLs

based on real mobile applications. On the other hand, we have also

selected some large FMs, which have been randomly generated, to

further evaluate the scalability of our approach. In spite of the broad

range of FMs that have been considered to evaluate our approach,

there could be issues with a particular combination of the FM size,

the variability degree and the number of cross-tree constraints for

which the results obtained in our experiments may differ. The second

validity threat is the selection of the MOEAs. To address this threat, we

have included six distinct algorithms, covering diverse techniques of

multiobjective optimization. However, since other MOEAs could po-
entially provide better results, we plan to extend our experiments

ith different algorithms as part of our future work.

With regards to construct validity threats, the lack of assessing

he validity of cost measures and the lack of assessing the validity of

ffectiveness measures (de Olvieira Barros and Neto, 2011) have been

ddressed by using the same number of fitness evaluations in all the

lgorithms and using standard quality indicators.

Finally, we address conclusion validity threats by executing in-

ependent runs of the experiments (1000 independent runs on the

omputer and 100 on the mobile device) and by applying standard

tatistical analysis techniques such as Mann–Whitney U test and Â12.

Moreover, all the code and data used to run these experiments are

vailable9 for replication and further details.

. Conclusions and future work

In this paper we have presented a novel DSPL approach that pro-

ides support for the dynamic reconfiguration of mobile applications,

enerating optimal configurations with regards to distinct criteria

uch as quality of service, battery consumption or memory footprint.

o this end, the variability of the application is modeled using an FM,

nd configurations of the FM are generated at runtime using MOEAs.

e have adapted commonly used MOEAs by including a fix operator,

hich transforms invalid configurations of an FM into valid ones, in

rder to generate only valid configurations of an FM at runtime. Then,

rom among the set of configurations returned by the MOEA, the most

ppropriate one for the current execution context is selected.

We have evaluated the quality of the Pareto fronts generated by

he MOEAs by applying commonly used quality indicators, as well as

he time spent in the generation of the Pareto fronts, making sure that

he results obtained are statistically meaningful by applying distinct

tatistical tests.

We have executed the MOEAs on a mobile device, and the results

how that the majority of them are efficient enough for the dynamic

econfiguration of mobile applications. With regard to scalability, we

ave seen that our fix operator is a limiting factor in handling very

arge FMs. However, as stated before, these FMs are not found in

ypical SPLs for mobile devices and, therefore, mobile devices do not

eed such scalable methods at this time.

As mentioned before, we will extend the experiments as part of

ur future work, including:

1. Additional MOEAs (such as those successfully used in the SOA

domain).

2. A sensitivity analysis on some of the parameter settings, to assess

the robustness of our approach with respect to the choices used

in this paper.

3. Additional optimization objectives, to evaluate the scalability of

our approach with respect to the number of objectives to optimize.

Moreover, we also plan to implement a tailor-made version of

hese MOEAs, focusing on efficiency in mobile devices, which may

educe the execution time considerably. Finally, we will incorpo-

ate anytime algorithms in our evaluation process, in order to assess

hether they yield better results than MOEAs.
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ppendix A. Comparison of the initial population with the final

ront

This appendix shows how the fitness of the population evolves

long the execution of the algorithm. To this end, we have measured,

or each feature model, the median of the objectives in the first pop-

lation and in the final front generated by each MOEA.

Figs. A1–A3 show the difference in the objectives values when the

nal front is compared with the initial population. On the one hand,

e can see that in small and medium-sized FMs, the fitness in the final
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Fig. A1. Mean difference in objective values between
ront is clearly higher than the fitness in the initial population. In some

Ms (e.g., x264, Wget, Sensor Network, Mobile Game, Mobile Media),

lthough the usability in the final front has decreased, the decreases

n battery consumption and memory usage are much higher, meaning

hat these configurations are better than those generated in the initial

opulation. For instance, in the case of the Mobile Game feature model,

AES has been able to decrease the battery consumption by 17.5% and

he memory usage by 22.3% at the cost of decreasing the usability

y only 1.75%. There are also FMs (e.g., Berkeley DB Memory, Tank
ar, Mobile Guide) where the usability has been increased at the
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same time that the battery consumption and the memory usage have

decreased. For instance, in Tank War, PAES has increased the usability

by 17.2%, decreasing the battery consumption and the memory usage

by 0.6% and 9.1%, respectively.

On the other hand, in the case of the largest FMs (SPLOT-3CNF-500,

SPLOT-3CNF-1000, SPLOT-3CNF-2000 and SPLOT-3CNF-5000) we can

see that the improvement shown in the final front with respect to

the initial front is very low (objectives increase or decrease by less

than 6%). In these FMs, a significant fraction of the maximum num-
er of evaluations is spent in the generation of the initial population.

he reason is that the fix operator may require several retries to

epair an invalid FM configuration, which has been generated by

pplying mutations to a valid seed, in order to add it to the ini-

ial population. Therefore, these results could be improved upon by

mproving our fix operator. However, these FMs are not the most

elevant ones for our approach because their number of configu-

ations is much higher than is usually found in DSPLs for mobile

evices.
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